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Motivation

« Solving equations of motion for compact binary inspirals is important but has
challenges

Must be achieved using numerical methods, which is a bottleneck for gravitational wave data
analysis applications

Important phase errors over many thousands of orbits (e.g., in LIGO’s bandwidth) can be
caused by inaccurately capturing the effects of very weak nonconservative forces

Often can involve using high-order adaptive solvers to provide sufficiently accurate numerical
solutions over a very large number of orbits

Perturbative solutions exhibit secular behavior making result invalid over short times

At least one of these issues are often encountered in solving other types of nonconservative
equations of motion

« Most analytical methods for gravitational wave source problems are based on orbit-
averaging/adiabatic approximations

Advantages:

« Simpler equations to solve

» Often provides useful qualitative understanding of the system’s physical tendencies
Disadvantages:

* Ambiguity about timescale to use for averaging: Period is associated with mean, eccentric, or true
anomalies? [see Pound & Poisson (2008)]

* Not a systematic procedure
* What are the errors of the resulting approximate solutions?
* Lose real-time phase information

+ Tend to be less useful as a system becomes more complicated (e.g., precession)
[see Chatziioannou et al (2016) for recent progress]
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Dynamical Renormalization Group

Overview

« Background:
Introduced as a method for solving ODE'’s by Chen, Goldenfeld, and Oono (1996)

Based on Renormalization Group Theory from high-energy and condensed matter physics
Encapsulates several other asymptotic methods of global analysis including:

* Multiple-scale analysis
*  WKB theory
« Boundary layer theory
Based on naive perturbation theory

Systematic

* Provides a turn-the-crank method of finding globally valid approximate solutions
* Provides a formal error estimate on the perturbative solution Perturbative solutions have same

« Contains strong self-consistency checks of the calculation

e Basicidea

Time at which to build a perturbative solution is arbitrary

Perturbative solutions (at fixed order) at different times
have the same form but different initial data parameters

These solutions are related to each other by
‘renormalization group flows” from one initial
data set to another.

What gets renormalized? Initial data parameters.

z(t) = Xo + Vo(t —to) + O(t — tg)?

form at different “initial” times and
are related by their “initial” data

Exact solution,
which may not
be known

v

! 1
to to to ¢

z(t) = X, + Vit —ty) + Ot —to)? th=tg+6t = X)=~Xo+Vodt, Vi=V,
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Dynamical Renormalization Group
The algorithm

Write down the equations of motion

Write down a background solution around which to perturb

This solution is written in terms of “bare” parameters (i.e., Rg(ty)), which implicitly depend upon the initial time
t,, away from which we flow.

Use this background to calculate perturbatively the solution to equations of motion.

The perturbation will in general have secular “divergences” (i.e., terms that grow as (t-ty)).

Take this solution and write the bare parameters as renormalized parameters (i.e., Rx(7)) plus
‘counter-terms”.

Counter-terms will be proportional to (z-t;)? and are chosen to
eliminate the t, dependence of the aforementioned solution.

7 is known as the “subtraction point” or “renormalization scale.” Quantum Dynamical
This step yields the “renormalized” perturbative solution. Field Renormalization
Renormalized solution must be independent of the choice of . Theory Group
The solutions’ explicit dependence on t is cancelled by the Do — T
implicit dependence of the renormalized parameters on 7.
A — 1

Use this fact to derive a first-order differential equation (called the
“renormalization group (RG) equation”) for the renormalized parameter. Bo— T

The right-hand side of the RG equation is the “beta () function.”

Solve the RG equations and set t = t, the observation time.

All of the secularly growing terms are resummed at this order in perturbation theory.
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Binary inspirals at leading post-Newtonian order
Equations of motion

« 0PN equations of motion in polar coordinates (motion occurs in a plane for all time)

0 M 64M3v . 16M%*v ., 16M%v . ,

T T g T s T T Y
rw+ 2rw = — 24M3Vw — Sszfﬁzw — LMZV(US
B 5r3 512 5

« Radiation reaction from gravitational wave emission causes orbit to depart from a
background orbit
— For definiteness, consider a background circular orbit with a Keplerian angular frequency

M
— Perturbed orbit is described by:
r(t) = Rp + 0r(t) ér/Rp ~ O(v°)
UALRBQB
w(t) = 0B + dw(t) 8w /Qp ~ O@W®)

« Expand equations of motion to first order in perturbations off of background orbit

67(t) — 30%r(t) — 2RQBIW(t) = 0

30 .
REdi(t) + 20567 (t) = —?VR%QTB
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General solution
« General solution is parameterized by four numbers (the bare parameters, “B”)

64v , 64v

r(t) = Rp — ?Q%R%(t —tp) + ?9533% sinQp(t — to) + Apsin (Qp(t — to) + OB)
w(t) = Qp + %?”R%Qg(t Cty) — %Rggg sin (¢ — to) — 2 BAB i (Qp(t — to) + )

« Can shift some bare parameters to remove non-secular sinusoids using trig identities
64v

Ap — Ap — ?R%Q% cos ®p
6 (5
bp —+ &g + %VRBQB sin ®p
5 Ap
« This results in the following general perturbed solution:
64v . .
r(t) = Rp — ?”R%Q%(t —t9) + Apsin (2p(t —to) + ®B)
96 20pAp .
w(t) = Qp + ?”R%Qg(t —to) — BB B sin (Qp(t —to) + Op)

48y 2A
P(t) = @5 + Qp(t —to) + ?Rgng(t —t0)® + R—;cos (QB(t —to) + @5)

« Two types of perturbations off of background orbit
— Secular terms (grow linearly with time and eventually invalidate the perturbative solution)
1 1
vQS Ry ~ vuylp

— Non-secular terms (bounded in time)

— e=v"VQ(t—ty) K 1
(expansion parameter for DRG)

t—1g~
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Renormalization

« Renormalize the initial data parameters
— Parameters depend implicitly on initial time

— Write a bare (“B”) parameter as a
renormalized (“R”) parameter plus a
‘counter-term”

v

— Use counter-terms to absorb secular divergences to to  tg ¢

Rp(to) =R op(T,t

B(to) = Rr(7) H0r(7, o) 55 = O(1)
®p(to) = ®r(T) Hds(T,t0)

#——— Counter-terms dr, a0 = O(e)
Qp(te) = Qr(T) Hda(r, to) 5 O(@) (s already O(0)
= € IS alrea

Ap(to) = Ar(T) H3a(r, ) A e

«  Write perturbative solutions in terms of renormalized parameters
— Drop higher order terms in € for consistency

64v

r(t) = Rgp + 6r — ?R%Q%(t —to) + Agsin ((t — t0)Qr + ®r + 6)
2Qp A
w(t) = Qg + 8g + %?”R%Q;(t —ty) — RR B sin ((t — t0)Qp + @ + 0s)
B(t) = ®r + s + (t —10)(Qr + 6a) + ?RRQR(t— to)* + R—Rcos((t —t0)Qr + P + 0s)
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« Introduce the subtraction point/renormalization scale t through t-t, = (t-t)+(z-t,)
« Choose counter-terms to remove (z-t;) dependencies

r(t)zRR+5R—64?VR (t—T)—MTyRRQ (T —to)|+ Arsin ((t — 7)Qp +|(T — t0)Qr|+ Pr + 0)
w(t):QR+5g+@R (t—'r)+g6—uRRQ (1 —to)|— Qgngsin((t—’r)QR+('r—tD)QR+<I>R+6¢)
d(t) = ®r +6a + (t — T)Qr +|(7 — t0)QUr|+ +(T—t0)6g+48—vR Q% (t — )2

+ +48VR QL (7 —t0)2+%cos((t—r)nmr(r—tU)QR+<I>R+5¢,)

* Counter-terms through O(e) are:
64y
)
da(T,t0) = — —R‘?{Q}%(T —tg) + O(€?)

(7, t0) = —QR(T—tUH‘lg—”R (1 — t0)? + O(2)

da(T,to) = 0(62)

Or(T,t0) = CQ% (T — to) + O(e?)
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Renormalization Group equations

* Recall: bare parameter = renormalized parameter + counter-term

RB(to) = RR(‘T) + G:VR ( — to) + O(E2RR)
Qp(te) = Qr(r) — QG—VR 200L(1 —to) + O(2QR)

Dp(to) = Pr(T) — Qr(T —to) + 48?!/R QL(T — tg)* + O(€?)

AB(tU) = AR(T) + O(EQAR)

Note that the bare parameters are independent of T
— Differentiate the bare parameters with respect to T and set the result to zero.
— Solve for the derivative of the renormalized parameter.

dR 64

Mr _ O Br)0%(r) + O(@Rafe)

pe 96"RR(T>QT () + O,

dP

d—f = Qg(7) + O(€QR)
dA

d—f — O(*ArQR)

— Secular pieces automatically cancel if the solution is renormalizable
« Otherwise, secular divergences remain in renormalized parameters, which are supposed to be finite
+ This is a self-consistency check intrinsic to the DRG method
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Solve the RG equations to describe the “flow” fromz =t tot =t

Analytically, if possible
Numerically, otherwise (coupled first-order differential equations)

L 1/4
Ru(t) = (lez(tﬁ-) _ %Md(t _ ti))

N\ 3/2
n(t) = n(e) ()
1 1

(I)R(t) = (I)R(tz‘) +

Agr(t) = Ar(t:)

32005, (t;)R%(t:) 32005 (t) R, (t)

Substitute the RG solutions into the perturbative solutions and evaluate at T =t

r(t) = Rr(t) + Ar(t) sin ®g(?)

B 20r(H)Ar(t)
w(t) = Qr(t) — *’;R (tf sin ® 5 (¢)
b(t) = Br(t) + 24R(8) s B (t)

RR(ﬁ)
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Comments

In analogy with quantum field theory calculations, first-order perturbative calculation is
sometimes referred to as a “1-loop” calculation

Solutions to RG equations resum secular divergences order-by-order in e

y | 1/4
RR(t)=RR(ti)(1— =0 Ri(m)%(ta(t—ti)) + O(Ra(t:)v}(t:)e)

5

= Ra(ti) — “2 R 0t — 1) — oz RR ()R (0) (¢ — t0)? + O(Ra(t:)’, Ra(t:o}(t)e)

Third term is a secular divergence that appears at 2" order but is already captured at first order by the
resummation performed by DRG!

Error estimates are naturally provided during the calculation

DRG identifies (1-loop) invariants along the RG trajectory
1
Pr(t) + OO constant

Ag(t) = constant

R (t)Q%(t) = constant = M

R%:(t) (1 + @R%(t)ﬂ%(t) t) — constant

Terms involving (t-7)(z-ty) must be cancelled by pieces generated from counter-terms

Provides another self-consistency check of the calculation
Removal of such cross terms is important for the renormalizability of the perturbative solution
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DRG to second order in e: The 2-loop calculation

« Use same equations of motion but expanded to 2" order in the perturbations.
« Find general solution to the 2" order equations
« Shift bare parameters (i.e., initial data) to absorb redundant, finite pieces

— These shifts have some freedom parameterized by p.

— Easiest to choose a “renormalization scheme” so as to keep the resulting 2-loop RG
equations as simple as possible, which is equivalent to choosing u to remove all the finite,
t-dependent pieces in the expression for the 2" order angular frequency solution.

 Renormalize initial data parameters to remove secular divergences.

— For example:
14% 29696 ~ 6144
Tz—loop(t) = 5 RE - 75 VZR}%IQ 25 2R le [(t - T)Z — (7_ - t0)2j|

656 48 2

- 1—5uARR Q% cos (g + Qr(t — 7)) + gVARR Rt —1)%cos (Br + Qr(t — 1))
1 A% 496 .

+ §R— cos (2®p + 2Qr(t — 7)) |- HVARR St — )|+ (1 — to)| sin (Pr + Qr(t — 7))

R

10 10

Hé% |HOY |sin (@R + (t —7)QR)

— Yields the counter-terms for R and A through 2-loops

— Importantly, cross terms involving (t-t)P(z-t,)4 automatically cancel with other terms containing
lower-order counter-terms (self-consistency).
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At the end of the day, the counter-terms through 2-loops are

5p = 6?"3 Q8 (7 — tg) — % V2 RUQL (1 — 4)2 + O(Rpeé®)

So = — 96—”12 S OL(r — to) + 1628596 VRO (r — 1) + O(Qre®)

b4 = @AR RQ5% (1 — to) + O(ARe®)

o = — Qp(T —to) + 48”359 (T —to)? — 5222 V2RO (1 — £5)?3
+ %yARR Rsin@p(ty) — iRz sin2®5(tg) + O(€*)

RG equations for initial data parameters are

d 64
ﬁ — —VRRQE’
dr

dQ2
R _ 961/R QT
dr
ddp
-0
dr R
dAg 496 :
= = — ZZ ApvR%08
dr 15 “RVIRYR
— Alarge number of cancellations happen to prevent secular terms from remaining in the RG

equations (self-consistency)
— RG equations and solutions for all renormalized quantities (except A) are same as at 1-loop
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« Solution for Ai (= egRg Where ey is the orbit’s small eccentricity) is

RR(t)
RR(tE)

Ri(t) )19/ 12

31/12
) - BR(t) = RR(t) = BR(ti) (RR(G)

An(t) = Ar(t:) (

— Power of 19/12 accounts for the circularization of a compact binary inspiral
— Matches the well-known expression of Peters (1964) in the limit of small orbital eccentricity.

* RG invariants are same as at 1-loop except for a 2-loop modification to Ay invariant:
Ag(t) = constant — ez (t)RE (t) = constant
«  Full, resummed perturbative solution through 2"d order is:

r(t) = Rg(t) [1 + er(t) sin ®p(t) + %eﬁ(t) — 21%:/21%}5(@9}3(@

_ %UBR&)R%@)Q%(@ cos@p(t) + %e?z(t) cos 2B p(t) + O(VEQR(t —t,))
w(t) = Qr(t) [l — 2eg(t)sin®p(t) + %uen(t)l??g(t)ﬂ?g(t) cos Pp(t) — ge%(t) cos 20 () + O(VEQr(t — tz))}

o(t) = ®p(t) + 2er(t) cos @r(t) + E’;ﬁueﬂ(tm;(t)ng(t) sin ®p(t) — ge';}(t) sin 2@ g(t) + O(vE Qr(t —t:))
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Binary inspirals at first post-Newtonian order

« Include 1PN radiation reaction force but OPN potential (for demonstration)
« Following the same steps as for OPN order, the 1-loop RG equations are

R 0 05(3361/ 3179)R3.08,
dQr 96 2
TR _ VR?ZQE + 2¥(336v — 3179)RL,0%,
dr 35
d® dAr
TE _q —0
dr Ry “dr

« Analytical solutions can be found when integrating these RG equations

—M%Mg(t —t) = : 4 (BR(t) — Ry(t:)) + %aM(R%(t) — R%,(t:)) + %azMQ(R?{(t) — R%(t:))
+ a3 M?(Rg(t) — Rr(t:)) + o* M* log ( gj((;)):zﬁﬂ{[ )

| Rr(t) 3f2_ M1/2
) (7)) T Bl

MPP2(@(t) — @r(t)) = 5 (RY(0) — B2 (1) + 5aM (RY3(5) — BY*(1)) + oM (RY2(t) — RY*(t)

od/2 M [5/? [t nh™! 1/RR — tanh™! \/RR ] L

Qr(t) =Q (same as OPN)

82

336
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Summary

« The Dynamical Renormalization Group method:
— Is a systematic, turn-the-crank way to solve differential equations
— Provides formal error estimates on the resulting globally valid approximate solutions
— Generates perturbatively invariant quantities along a RG flow

— Has built-in checks for self-consistency that can be used to verify correctness of the
calculation

— Subsumes other well-known global approximation methods including:
- WKB
* Multiple scale analysis
* Boundary layer theory

« We've applied DRG to several problems, at varying levels of completion:
— Damped harmonic oscillator (useful test ground for understanding the method in detail)
— Nonspinning OPN compact binary inspirals
— Nonspinning 1PN compact binary inspirals (nearly complete)
— Tidal dissipation of spinning, extended bodies in a binary (in progress)
— Poynting-Robertson effect on motion of dust irradiated by a star (nearly complete)
— Scalar self-force inspirals in a weak gravitational field
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Future work (1)

* Apply DRG to precessing compact binary inspirals and other spinning systems
— Can analytic solutions to the RG equations be found?
— Provide a formal error estimate for the validity of the resummed perturbative solutions

« Do the RG invariants have symmetries associated with them?

— Is there a “Noether’s Theorem?” that relates continuous symmetry transformations to these
quantities conserved throughout the RG flow (e.qg., inspirals)?

— Equal-mass and equal-spin-magnitude compact binary inspirals possess an inspiral-invariant
quantity found empirically in Galley et al (2010): Is it derivable using DRG? Is there a similar
expression more generally applicable?

281 - So + (81 - L)(S, - L)
V5
 Can DRG be combined with numerical solutions of backgrounds?

— If so, could be useful for resumming secular divergences encountered in numerical
simulations of binary black holes for theories with corrections to general relativity
[see Okounkova et al (2017)]

— Could also be useful for calculating gravitational self-force inspirals
[see Gralla & Wald (2008), Warburton et al (2012), Osburn et al (2016)]
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Future work (2)

« Could DRG handle transient (orbital) resonances since averaging methods are not
used? [e.g., see Flanagan & Hinderer (2012) for the breakdown of averaging]

« Other interesting possible applications include:
— Exoplanet orbital evolutions
— Binary inspirals/outspirals of not-so-compact bodies (e.g., mass-transferring stellar bodies)
— Orbital mechanics of satellites
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